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(57) ABSTRACT

The disclosure includes a system and method for detecting
communities in a weighted graph. The community detection
module includes a tagset data aggregator, a counts statistics
engine, a weighted graph generator, a coherence engine, a
community detector and a tag recommendation engine. The
tagset data aggregator receives tagset data. The counts statis-
tics engine determines counts statistics for the tagset data.
The weighted graph generator generates and denoises
weighted tag occurrence graph based on the counts statistics.
The coherence engine determines importance score for all
tags and coherence score for all tagsets in the tagset data. The
community detector determines maximally coherent commu-
nities in the weighted tag co-occurrence graph. The tag rec-
ommendation engine recommends tags in real time using the
maximally coherent communities.
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OVERLAPPING COMMUNITY DETECTION
IN WEIGHTED GRAPHS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/827,513, filed on May 24, 2013, which is
herein incorporated in its entirety by reference.

BACKGROUND

The specification relates to detecting overlapping commu-
nities in weighted graphs.

Community detection is a well-studied paradigm and is
used in a variety of domains, such as physics, biology, com-
puter science, social networks analysis, etc. to find novel and
useful collection of entities that go together. One way to form
communities is by amassing entities such as tags or keywords
in collaborative tagging systems, products in retail systems,
people in social networking systems, or genes in biological
systems.

There are two main problems in community detection.
First, the data used to associate entities with other entities
might be noisy as in some cases these associations might just
be random while in other cases these might be significant.
This degree of association between pairs of entities might be
quantified by a weight between them. Therefore detecting
communities in weighted graphs is a more important problem
than in unweighted graphs. The second problem is that the
communities themselves might be overlapping because an
entity might be associated with more than one community.
For example, a product like a wrist watch might go with both
electronic products as well as jewelry products. Similarly, an
ambiguous keyword like “bank” might mean a financial insti-
tution or a bank of a river. Therefore the community detection
paradigm must deal with overlapping communities in
weighted graphs.

Previous attempts to create graphs include generating an
unweighted graph either directly or by thresholding a
weighted graph, detecting communities, and then removing
the noise from the communities. Thresholding, however,
leads to a significant loss of information and makes the final
communities detected very sensitive to the threshold used to
convert the weighted graph into unweighted graph. In addi-
tion, removing the noise from the communities after they
have been detected results in poorly defined communities
because important tags may get improperly removed.

SUMMARY

According to one innovative aspect of the subject matter
described in this disclosure, a system includes a processor and
a memory storing instructions that, when executed, cause the
system to: identify a context defining a tagset, determine a
plurality of tagsets each including one or more of the tags and
a vocabulary of all tags, generate counts statistics using the
plurality of tagsets and the vocabulary of all tags, generate a
weighted co-occurrence graph including each pair of tags in
the vocabulary of all tags based on the counts statistics,
denoise the weighted tag co-occurrence graph, and respon-
sive to removing the noise, identify at least one community in
the weighted tag co-occurrence graph.

In general, another innovative aspect of the subject matter
described in this disclosure may be embodied in methods that
include: identifying a context defining a tagset, determining a
plurality of tagsets each including one or more of the tags and
avocabulary of all tags, generating counts statistics using the
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plurality of tagsets and the vocabulary of all tags, generating
aweighted co-occurrence graph including each pair of tags in
the vocabulary of all tags based on the counts statistics;
denoising the weighted tag co-occurrence graph, and respon-
sive to removing the noise, identifying at least one commu-
nity in the weighted tag co-occurrence graph of overlapping
communities.

Other implementations of one or more of these aspects
include corresponding systems, apparatus, and computer pro-
grams, configured to perform the actions of the methods,
encoded on computer storage devices.

These and other implementations may each optionally
include one or more of the following features. For instance,
the operation further includes: determining a measure of co-
occurrence consistency for each pair of tags in the vocabulary
of all tags based on the counts statistics, the measure of
co-occurrence consistency measuring how much more is a
likelihood of each pair of tags co-occurring in a tagset from
the plurality of tagsets relative to random, determining
whether a measure of co-occurrence consistency for a pair of
tags in the weighted tag co-occurrence graph is below a
threshold, responsive to determining that the measure of co-
occurrence consistency is below a threshold, removing an
edge connecting the pair of tags from the weighted tag co-
occurrence graph as noise, determining whether a measure of
co-occurrence consistency for a pair of tags in the weighted
tag co-occurrence graph is above a threshold, responsive to
determining that the measure of co-occurrence consistency is
above a threshold, re-computing counts statistics and updat-
ing the measure of co-occurrence consistency for the pair of
tags in the weighted tag co-occurrence graph based on the
recomputed counts statistics. In another embodiment, the
operation further includes: determining an importance score
of'the one or more tags in each of the plurality of tagsets using
the weighted tag co-occurrence graph, the importance score
indicating how highly each tag is connected to other tags in
each of the plurality of tagsets, determining coherence of each
of'the plurality of tagsets based on the importance score of the
one or more tags, the coherence being a measure of commu-
nity-ness and expressed as the aggregate of the importance
score of the one or more tags in each of the plurality of tagsets,
identifying the one or more communities from the weighted
tag co-occurrence graph by comparing the coherence
between each of the plurality of tagsets, determining a pair of
tags with a measure of co-occurrence consistency above a
threshold as seed, identifying the seed as a current tagset,
determining the coherence of the current tagset, adding a first
tag that has a co-occurrence consistency measured with all
tags of the current tagset as being above the threshold to create
a grow tagset, removing a second tag having a least impor-
tance score from the current tagset to create a shrink tagset,
comparing a coherence measured for the grow tagset with a
coherence measured for the shrink tagset, responsive to the
coherence measured for the grow tagset being greater than the
coherence measured for the shrink tagset, identifying the
grow tagset as a next tagset and adding a third tag that has a
co-occurrence consistency measured with remaining tags of
the next tagset as being above the threshold, responsive to the
coherence measured for the grow tagset being lesser than the
coherence measured for the shrink tagset, identifying the
shrink tagset as a next tagset and removing a fourth tag having
a least importance score from the next tagset, comparing the
coherence measured for the next tagset with the coherence of
the current tagset, responsive to the coherence measured for
the current tagset being greater than the coherence measured
for the next tagset, determining the current tagset as being a
community; responsive to the coherence measured for the
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current tagset being lesser than the coherence measured for
the next tagset, adding a next tag that has a co-occurrence
consistency measured with all tags of the current tagset as
being above the threshold to create a next grow tagset and
removing a next tag having a least importance score from the
current tagset to create a next shrink tagset, creating a largest
candidate seed by adding a next tag to the seed to increase
coherence until failure, and identifying the largest candidate
seed as the current tagset. Once the community has been
created, in one embodiment, the operations further comprise
recommending tags in real time based on the at least one
community in the weighted tag co-occurrence graph.

The technology may be particularly advantageous in a
number of respects. First, the system provides algorithms to
aggressively remove noise at the weighted graph generation
and to greedily detect maximally coherent communities in the
weighted graph. In addition, because the community detec-
tion is performed on a weighted graph, the detected commu-
nities are overlapping, strong and tightly bound.

BRIEF DESCRIPTION OF THE DRAWINGS

The specification is illustrated by way of example, and not
by way of limitation in the figures of the accompanying
drawings in which like reference numerals are used to refer to
similar elements.

FIG. 1 is a block diagram illustrating an example system
for detecting communities in a weighted graph.

FIG. 2 is a block diagram illustrating an example commu-
nity detection module.

FIG. 3 is an example graphic representation illustrating a
power set of a tagset associated with tagset data.

FIG. 4 is a flowchart of an example method for recom-
mending tags using the communities detected in a weighted
tag co-occurrence graph.

FIGS. 5A and 5B are flowcharts of an example method for
removing noise from the weighted tag co-occurrence graph.

FIGS. 6A and 6B are flowcharts of another example
method for removing noise from the weighted tag co-occur-
rence graph.

FIGS. 7A and 7B are flowcharts of an example method for
detecting a community in a weighted tag co-occurrence
graph.

FIGS. 8A and 8B are flowcharts of an example method for
recommending tags using the communities.

DETAILED DESCRIPTION

System Overview

A system and method for detecting communities in a
weighted graph that is generated from aggregated tagset data
is described below.

FIG. 1 illustrates a block diagram of a system 100 for
detecting communities in a weighted graph according to
some implementations. The illustrated description of the
example system 100 includes user devices 115a . . . 1157 that
can be accessed by users 1254 . . . 125 and a web server 111.
In the illustrated implementation, these entities of the system
100 are communicatively coupled via a network 105. In FIG.
1 and the remaining figures, a letter after a reference number,
for example “1154” can be a reference to the element having
that particular reference number. A reference number in the
text without a following letter, for example “115,” can be a
general reference to the embodiments of the element bearing
that reference number.

The network 105 can be a conventional type, wired or
wireless, and may have a number of configurations, for
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example, a star configuration, a token ring configuration or
other configurations. Furthermore, the network 105 may
include one or more of a local area network (LAN), a wide
area network (WAN) (e.g., the Internet), and other intercon-
nected data paths across which multiple devices may com-
municate. In some implementations, the network 105 may be
apeer-to-peer network. The network 105 may also be coupled
to or include portions of a telecommunications network for
sending data in a variety of different communication proto-
cols. In some implementations, the network 105 includes
BLUETOOTH® communication networks or a cellular com-
munications network for sending and receiving data, for
example, via short messaging service (SMS), multimedia
messaging service (MMS), hypertext transfer protocol
(HTTP), direct data connection, WAP, electronic message,
etc. While only one network 105 is illustrated, any number of
networks may be coupled to the above mentioned entities.

The user devices 115a . . . 115z in FIG. 1 are used by way
of example. Although only two devices are illustrated, the
technology applies to a system architecture having one or
more user devices 115. In some embodiments, the community
detection module 1034 can be stored on a user device 1154,
which is connected to the network 105 via signal line 108. The
community detection module 1034 can be a thin-client appli-
cation that includes part of the community detection module
103 on the user device 115a¢ and part of the community
detection module 103 on the web server 111 to detect one or
more communities. The user device 115 can be any comput-
ing device that includes a memory and a processor. For
example, the user device 115 can be a laptop computer, a
desktop computer, a tablet computer, a mobile telephone, a
personal digital assistant, a mobile email device, a portable
game player, a portable music player, a television with one or
more processors embedded therein or coupled thereto or any
other electronic device capable of accessing the network 105,
etc.

In some embodiments, the user device 115a includes a
browser 177. The browser 177 can be software including
routines stored in the memory and executed by the processor
of'the user device 115. The browser 177 includes any browser
application that can retrieve pages hosted by a server (for
example, the web server 111, a social network server (not
shown), a third-party server (not shown), etc.) and can present
the pages on a display (not shown) on the user device 1154. In
some embodiments, the browser 177 retrieves and presents
the pages hosted by the user device 115. The term page
includes any document or information resource that com-
prises textual elements, non-textual elements (for example,
static images, animated images, audio, video, etc.), interac-
tive elements (for example, games, buttons, hyperlinks, etc.),
scripts (for example, JavaScript, code implementing Ajax
techniques, etc.), metadata, etc. In some embodiments, the
page is a web page in any file format (for example, HTML,
HTMLS5, XHTML, XML, etc.).

In some embodiments, the community detection module
1035 can be operable on the web server 111, which is coupled
to the network 105 via signal line 104. The web server 111 can
be any computing device such as a hardware server including
a processor, amemory and network communication capabili-
ties. The web server 111 includes software instructions and/or
data for generating online services and providing content
from the online services to a user who has a subscription with
the online services. For example, the web server 111 trans-
mits content such as video, audio, images, publication entries,
etc. from an online service. In some embodiments, the content
transmitted includes keywords or terms assigned to content
by users of the online service. An application such as a
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browser 177 launched on a user device 115 receives the
content transmitted by the web server 111 via the network
105. Other examples of a web server 111 include an online
service for users to provide reviews and commercial websites
for purchasing products.

The web server 111 comprises an online service engine 109
that can be software including routines that, when executed
by aprocessor (not pictured), generates an online service that
is hosted by the web server 111. The online service engine
109 can be stored on a non-transitory memory associated with
the web server 111. The online service engine 109 is dedi-
cated to generating and providing content for users. The
online service engine 109 sends and receives data to and from
other entities of the system 100 via the network 105. For
example, the online service engine 109 generates a video
sharing online service that plays a video responsive to receiv-
ing a user request from the user device 115. In another
example, the online service is an image hosting service that
returns one or more images in response to receiving an appli-
cation programming interface (API) call. In some embodi-
ments, the online service engine 109 receives data including
keywords/terms describing the content from users of the
online service. For example, the online service can be a social
bookmarking service that hosts and displays publication
entries annotated by users with tags. In another example, the
online service can be an online database that provides infor-
mation related to movies, television programs and video
games including user reviews and tags annotated by experts.
Other examples of online services that provide access to
content include current news, financial news, search service,
maps, price aggregator service, weather service, airline res-
ervations, file archives, electronic mail, blogs, micro-blogs,
social networks, calendars, geolocation service, etc.

In some embodiments, the browser 117 accesses the online
service using hypertext transfer protocol (HTTP) requests
and retrieves content for one or more web pages generated
from the online service engine 109.

The community detection module 103 can be software
including routines for detecting communities in a weighted
graph. In some embodiments, the community detection mod-
ule 103 can be implemented using hardware including a field-
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC). In some other embodiments, the
community detection module 103 can be implemented using
a combination of hardware and software. In some embodi-
ments, the community detection module 103 may be stored in
a combination of the devices and servers, or in one of the
devices or servers.

In some embodiments, community detection module 103
receives tagset data including a plurality of tagsets and iden-
tifies a context defining a tagset. The community detection
module 103 generates counts statistics using the plurality of
tagsets. The community detection module 103 generates a
weighted tag co-occurrence graph based on the counts statis-
tics and denoises the weighted tag co-occurrence graph. The
community detection module 103 determines importance
scores for all tags in the tagset data. The community detection
module 103 determines coherence scores for all tagsets in the
tagset data. The community detection module 103 determines
maximally coherent communities in the weighted tag co-
occurrence graph and recommends tags in real time using the
maximally coherent communities. The community detection
module 103 is described below in more detail with reference
to FIG. 2.

Example Community Detection Module 103

Referring now to FIG. 2, an example of the community

detection module 103 is shown in detail. FIG. 2 is a block
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diagram of a computing device 200 that includes the commu-
nity detection module 103, a processor 235, a memory 237, a
communication unit 245 and a storage device 243 according
to some implementations. These components of the comput-
ing device 200 are communicatively coupled to each other by
abus 220. Optionally, the computing device 200 can be a web
server 111. In some embodiments, the computing device 200
can be a user device 115 or other servers.

The processor 235 includes an arithmetic logic unit, a
microprocessor, a general purpose controller or some other
processor array to perform computations and provide elec-
tronic display signals to a display device. The processor 235
is coupled to the bus 220 for communication with the other
components via signal line 236. The processor 235 processes
data signals and may include various computing architectures
including a complex instruction set computer (CISC) archi-
tecture, a reduced instruction set computer (RISC) architec-
ture, or an architecture implementing a combination of
instruction sets. Although a single processor is shown in FIG.
2, multiple processors may be included. The processing capa-
bility may be limited to supporting the display of images and
the capture and transmission of images. The processing capa-
bility might be enough to perform more complex tasks,
including various types of feature extraction and sampling.
Other processors, operating systems, sensors, displays and
physical configurations may be possible.

The memory 237 stores instructions and/or data that may
be executed by the processor 235. The memory 237 is coupled
to the bus 220 for communication with the other components
via signal line 238. The instructions and/or data may include
code for performing the techniques described herein. The
memory 237 may be a dynamic random access memory
(DRAM) device, a static random access memory (SRAM)
device, flash memory or some other memory device known in
the art. In some embodiments, the memory 237 also includes
a non-volatile memory or similar permanent storage device
and media, for example, a hard disk drive, a floppy disk drive,
a CD-ROM device, a DVD-ROM device, a DVD-RAM
device, a DVD-RW device, a flash memory device, or some
other mass storage device for storing data on a more perma-
nent basis.

The communication unit 245 transmits and receives data to
and from one or more of the user devices 115 and/or the web
server 111 depending upon where the community detection
module 103 may be stored. The communication unit 245 is
coupled to the bus 220 via signal line 240. In some embodi-
ments, the communication unit 245 includes a port for direct
physical connection to the network 105 or to another com-
munication channel. For example, the communication unit
245 includes a USB, SD, CAT-5 or similar port for wired
communication with the user device 115. In some embodi-
ments, the communication unit 245 includes a wireless trans-
ceiver for exchanging data with the user device 115 or other
communication channel using one or more wireless commu-
nication methods, for example IEEE 802.11, IEEE 802.16,
BLUETOOTH® or another suitable wireless communication
method.

In some embodiments, the communication unit 245
includes a cellular communications transceiver for sending
and receiving data over a cellular communications network,
for example, via short messaging service (SMS), multimedia
messaging service (MMS), hypertext transfer protocol
(HTTP), direct data connection, WAP, electronic message or
another suitable type of electronic communication. In some
embodiments, the communication unit 245 includes a wired
port and a wireless transceiver. The communication unit 245
also provides other conventional connections to the network
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105 for distribution of one or more files and media objects
using standard network protocols, for example, TCP/IP,
HTTP, HTTPS and SMTP.

The storage device 243 can be a non-transitory memory
that stores data used by the community detection module 103.
In some embodiments the data is stored temporarily, for
example, in a cache. The storage device 243 may be a
dynamic random access memory (DRAM) device, a static
random access memory (SRAM) device, flash memory or
some other memory device known in the art. In some embodi-
ments, the storage device 243 also includes a non-volatile
memory or similar permanent storage device and media such
as a hard disk drive, a floppy disk drive, a CD-ROM device, a
DVD-ROM device, a DVD-RAM device, a DVD-RW device,
a flash memory device, or some other mass storage device
known in the art for storing information on a more permanent
basis. In the illustrated implementation, the storage device
243 is communicatively coupled by the bus 220 for commu-
nication with the other components of the computing device
200 via signal line 242. Although only one storage device is
shown in FI1G. 2, multiple storage devices may be included. In
some other embodiments, the storage device 243 may not be
included in the computing device 200 and can be communi-
catively coupled to the computing device 200 via the network
105.

In some embodiments, the data stored in the storage 243
includes tagset data, counts statistics data including co-oc-
currence counts graph, weighted tag co-occurrence consis-
tency graph, importance scores, coherence scores, list of
identified communities, community scores, recommendation
scores, recommended tags, etc. The tagset data aggregator
203 maintains the tagset data in the storage 243 aggregated
from the online services hosted by the web servers 111 in
some implementations. Examples of tagsets aggregated may
include video tags, bookmark tags, movie tags, etc. The
counts statistics generated by the counts statistics engine 205
may include co-occurrence counts, marginal counts, total
counts, co-occurrence probability and marginal probability
associated with the tagset data. In some embodiments, the
weighted graph generator 207 converts the co-occurrence
counts graph into the weighted tag co-occurrence graph for
storing in the storage 243. In some embodiments, the coher-
ence engine 209 stores the importance scores determined for
the tags in tagsets and the coherence scores determined for the
tagsets in the storage 243. In some embodiments, the com-
munity detector 211 stores the communities detected using a
greedy algorithm in the storage 243. In some embodiments,
the tag recommendation engine 213 stores community
scores, recommendation scores, etc. used in identifying the
recommendation tags. The storage 243 may store other data
for providing the functionality described herein.

In some embodiments, the community detection module
103 includes a controller 201, a tagset data aggregator 203, a
counts statistics engine 205, a weighted graph generator 207,
a coherence engine 209, a community detector 211, a tag
recommendation engine 213 and a user interface module 215.
These components of the community detection module 103
are communicatively coupled to each other via the bus 220.
Persons of ordinary skill in the art will recognize that some of
the components could run as a separate application on the
same computing device 200 or a separate computing device
200. For example, the tagset data aggregator 203 could be a
standalone application that runs on a separate server.

The controller 201 can be software including routines for
receiving data via the communication unit 245, routing the
data to the appropriate engine or module and transmitting
responses from modules or engines to the communication
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unit 245 for transmission to the user device 115 or the web
servers 111. In some embodiments, the controller 201 can be
a set of instructions executable by the processor 235 to pro-
vide the functionality described below for managing data and
handling communications between the community detection
module 103 and other components of the computing device
200. In some embodiments, the controller 201 can be stored in
the memory 237 of the computing device 200 and can be
accessible and executable by the processor 235. The control-
ler 201 may be adapted for cooperation and communication
with the processor 235 and other components of the comput-
ing device 200 via signal line 221.

In some embodiments, the controller 201 identifies the type
of data being received and transmits the data to the appropri-
ate module or engine of the community detection module
103. For example, the controller 201 receives content (e.g.,
video, audio, image, etc.) from the web server 111 for ren-
dering and transmits the content to the user interface module
215. In some other embodiments, the controller 201 receives
user inputs and user actions submitted by the user 125 from
the user device 115. The controller 201 sends the user actions
and the user inputs to the appropriate module or engine of the
community detection module 103. For example, the control-
ler 201 receives a request to create one or more tags for
content displayed on a web page hosted by the web server
111. The controller 201 then forwards the request to the tagset
data aggregator 203.

In some embodiments, the controller 201 receives infor-
mation from other components of the community detection
module 103 and transmits the information to the appropriate
component in the system 100 via the communication unit
245. For example, the controller 201 receives graphical data
for generating a user interface from the user interface module
215. The controller 201 then transmits the graphical datato a
display device (not shown) that is part of the user device 115.
The graphical data causes the user device 115 to present the
user interface to the user.

In some embodiments, the controller 201 receives data
from components of the community detection module 103
and stores the data in the storage device 243. For example, the
controller 201 receives data describing counts statistics for
tagset data from the counts statistics engine 205 and stores the
data in the storage device 243. In some embodiments, the
controller 201 receives data determining coherence scores for
communities detected by the community detector 211 and
stores the coherence scores in the storage device 243. In some
embodiments, the controller 201 retrieves data from the stor-
age device 243 and sends the data to components of the
community detection module 103. For example, the control-
ler 201 retrieves data including pairs of tags from the storage
device 243 as seeds for using in detecting communities and
sends the data to the community detector 211.

The tagset data aggregator 203 can be software including
routines for collecting data including tagsets from webpages
of an online service hosted by a web server 111. In some
embodiments, the tagset data aggregator 203 can be a set of
instructions executable by the processor 235 to provide the
functionality described below for collecting tagset data from
webpages. In some embodiments, the tagset data aggregator
203 can be stored in the memory 237 of the computing device
200 and can be accessible and executable by the processor
235. In some implementations, the tagset data aggregator 203
can be adapted for cooperation and communication with the
processor 235, the counts statistics engine 205 and other
components of the computing device 200 via signal line 223.

In some embodiments, the tagset data aggregator 203
aggregates tagsets for content annotated by collaborative
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users of the online service. The collaborative users collabo-
rate and create diverse tagsets to describe and organize con-
tent on the online service. Each tagset includes a plurality of
tags describing a specific entity or topic. The tags include
keywords or terms describing the entity that they are assigned
to and allow the entity to be found again by browsing or
searching on the online service. For example, a video sharing
online service receives tags, such as “football”, “super bowl”,
“touchdown”, “field goal”, etc. for a video clip that is asso-
ciated with the sport football. In another example, a social
bookmarking online service receives tags, such as “culinary”,
“cars”, “travel”, “fashion”, etc. for web bookmarks that link
to content that users find interesting. In some embodiments,
the tagset data aggregator 203 receives and/or aggregates tags
for content that already exist, and have been uploaded or
bookmarked by the online service. For example, a music
streaming online service includes music albums ready to play
from which the user creates multiple playlists. The user then
adds tags, such as “gym”, “roadtrip”, “party”, etc. to describe
the playlists.

In some embodiments, the tagset data aggregator 203
aggregates tagsets including a plurality of tags annotated by
expert users. For example, an online advertising service
receives tags, such as “basketball”, “football”, “scholarship”,
“political science”, “sorority”, etc. from expert advertisers
that target high school students applying to colleges. In a
second example, a movie review online service receives tags,
such as “corruption”, “bank robbery”, “revenge”, “adven-
ture”, “family”, etc. from movie experts describing the movie
entries associated with different genres.

In some instance, the tagset data aggregator 203 identifies
a context for defining a tagset. In some embodiments, the
context includes a resource tagset where tags are associated
with a single resource. For example, the tags could be tags
applied to images in a photo sharing online service. The
resource tagset is useful in determining the relationships
among tags and creating tag communities. In some embodi-
ments, the context includes a session tagset that has tags for
resources consumed in the same session. For example, the
session tagset is useful in building a recommendation engine
to predict the next image/video to recommend given the
user’s past browsing history within the session. In some
embodiments, the context includes a user-consumed tagset
that includes tags of resources consumed by the user. For
example, user-consumed tags include tags for things viewed,
commented on, etc. by the user and are used to generate user
profiles. In some embodiments, the context includes a user-
generated tagset that includes tags of resources generated by
the user. For example, the user-generated tagset includes tags
that the user applied to content items at multiple online ser-
vices, for example, an online service for collecting recipes, a
photo-sharing online service, a micro-blogging a social net-
work, etc. In some embodiments, the tagset data aggregator
203 determines a vocabulary of all unique tags in the tagset
data aggregated from the online service.

In some embodiments, the tagset data aggregator 203
stores data describing the tagset data and their size, the plu-
rality of tags in each tagset, and the vocabulary of all unique
tags determined for the tagset data in the storage 243. In some
implementations, the tagset data aggregator 203 sends the
vocabulary of all unique tags and/or the tagset data to the
counts statistics engine 205, the coherence engine 209 and/or
the community detector 211.

The counts statistics engine 205 can be software including
routines for generating counts statistics from the tagset data.
In some embodiments, the counts statistics engine 205 can be
a set of instructions executable by the processor 235 to pro-
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vide the functionality described below for generating counts
statistics from the tagset data. In some embodiments, the
counts statistics engine 205 can be stored in the memory 237
of the computing device 200 and can be accessible and
executable by the processor 235. In some implementations,
the counts statistics engine 205 may be adapted for coopera-
tion and communication with the processor 235, the weighted
graph generator 207 and other components of the computing
device 200 via signal line 225.

In some embodiments, the counts statistics engine 205
receives tagset data including a plurality of tagsets from the
tagset data aggregator 203 and determines counts statistics
from the tagset data. The counts statistics generated may
include co-occurrence counts, marginal counts, total counts,
co-occurrence probability and marginal probability.

In some embodiments, the counts statistics engine 205
determines co-occurrence count over each pair of tags,
(a,p)eVxV, where “V” represents the vocabulary of all
unique tags and each pair of tags (o,}) are elements of the set
represented by the Cartesian Product VxV. The co-occur-
rence count indicates the number of tagsets in which both tags
(a,p) co-occur. For example, the equation for generating a
co-occurrence count over each pair of tags (represented by the
symbol “Y(a,f))” can be:

N
Yle, B =) SlaexoBex),

n=1

where “0(bool)” represents 1 if “bool” is true and 0 otherwise,
the symbol “N” represents the tagset data size and the symbol
“x("” represents the n” tagset in the tagset data. The counts
statistics engine 205 generates the co-occurrence counts
graph (represented by the symbol “[¢ (a,p)]”) using the
co-occurrence count determined over each pair of tags.

In some embodiments, the counts statistics engine 205
determines a co-occurrence count threshold “6_,,.” as an
absolute value or a relative value based on the “N”, the tagset
data size. The counts statistics engine 205 sets the co-occur-
rence counts in the co-occurrence counts graph [y(c.,f3)] that
are below the co-occurrence count threshold “0_,, . to zero to
control for noise in co-occurrence counts.

In some embodiments, the count statistics engine 205
determines marginal counts for all unique tags, ceV, where
tag a is an element of the vocabulary of all unique tags “V”.
The marginal counts represent the number of co-occurrence
pairs in which tag a occurred with some other tag in the
tagsets data. For example, the equation for generating mar-
ginal counts for all unique tags (represented by the symbol
“p(er)”) can be:

W)= (@ B,

Bev

where “y(c,p)” represents the co-occurrence counts graph
and each tag “B” is an element of the vocabulary of all unique
tags “V”. The marginal counts “y(a)” is determined by add-
ing each row of the co-occurrence counts graph [y (a.,f3)].

In some embodiments, the counts statistics engine 205
determines total counts which represents the total number of
pairs in which some tag co-occurred with some other tag in
the tagset data. For example, the equation for generating total
counts (represented by the symbol “p,”) can be:



US 9,418,142 B2

11

o = %Z D@ P,

aeV geVv

where “Y(a,f)” represents the symmetrical co-occurrence
counts graph, each tag o and 3 are elements of the vocabulary
of'all unique tags “V”. The total counts “1,” is determined by
adding all the elements in the upper triangular co-occurrence
counts graph [y (c.,p)].

In some embodiments, the counts statistics engine 205
generates the co-occurrence probability for each pair of tags
“(a,)” and the marginal probability for all unique tags “a.”
based on the counts determined above. For example, the
equations for generating co-occurrence and marginal prob-
abilities (represented by “P(a,p)” and P(c) respectively) can
be:

V) @)

Yo Yo

Plo. p) =

In some embodiments, the counts statistics engine 205
sends the data describing the counts statistics to the weighted
graph generator 207. In some embodiments, the counts sta-
tistics engine 205 stores the counts statistics generated for the
tagset data in the storage 243.

The weighted graph generator 207 can be software includ-
ing routines for generating a weighted graph from the co-
occurrence counts graph. In some embodiments, the
weighted graph generator 207 can be a set of instructions
executable by the processor 235 to provide the functionality
described below for generating a weighted graph. In some
embodiments, the weighted graph generator 207 can be
stored in the memory 237 of the computing device 200 and
can be accessible and executable by the processor 235. In
some implementations, the weighted graph generator 207
may be adapted for cooperation and communication with the
processor 235, the coherence engine 209 and other compo-
nents of the computing device 200 via signal line 227.

The counts statistics engine 205 determines the initial co-
occurrence counts equally for both noisy and signal pairs of
tags in the co-occurrence counts graph. For example, in the
tagset {London, UK, Olympic, ceremony, bus, transporta-
tion}, the counts statistics engine 205 cannot identify whether
certain pair of tags is noise (e.g., {London, bus}) or signal
(e.g., {bus, transportation}) and determines the initial co-
occurrence counts for both pairs equally. In some embodi-
ments, the weighted graph generator 207 receives the counts
statistics including the co-occurrence counts graph from the
counts statistics engine 205. The weighted graph generator
207 generates a weighted tag co-occurrence consistency
graph (referred to herein as “weighted tag co-occurrence
graph”) from the co-occurrence counts graph to discard co-
occurrence counts between noisy pairs and to keep the co-
occurrence counts between signal pairs. In some embodi-
ments, the weighted graph generator 207 generates a measure
of co-occurrence consistency for each pair of tags included in
the co-occurrence counts graph and creates a weighted tag
co-occurrence graph. The measure of co-occurrence consis-
tency measures how much more likely is it for each pair of
tags to co-occur in a tagset relative to a random chance. For
example, the equation for generating co-occurrence consis-
tency measure for each pair of tags (represented by the sym-
bol “¢(ct,p)”) can be given by the Normalized Point-wise
Mutual information (NMI):
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log(P(a, B))

where P(a.,f3) is the co-occurrence probability associated with
each pair of tags (a.,p), P(ct) and P(p) are the marginal prob-
abilities associated with the respective unique tags . and f.
The range of the computed NMI “¢(a.,)” is in the range [0,
1].

The joint probability for each pair of tags (e.g., P(a,f)) as
compared to their random chance (e.g., P(c)P(f)) determines
the strength of the co-occurrence consistency for each pair of
tags. For example, consider two frequent tags (e.g., {Chris,
Eiffel tower}) that can co-occur frequently just out of random
chance compared to two relatively rare tags (e.g., {global
warming, greenhouse emissions}) that co-occur out of real
association. The joint probability determined for the rare tags
{global warming, greenhouse emissions} will be more com-
pared to that of the frequent tags {Chris, Biffel tower} indi-
cating that the rare tags have co-occurred with high consis-
tency.

In some embodiments, weighted graph generator 207 per-
forms a denoising operation on the weighted tag co-occur-
rence graph to remove pairs of tags with low measures of
co-occurrence consistency representing noise in the weighted
tag co-occurrence graph. The weighted graph generator 207
uses a co-occurrence consistency threshold “8,.,,,,,” to deter-
mine whether a certain pair of tags (e.g., {London, bus}) is
noise and whether a certain other pair of tags (e.g., {bus,
transportation}) is signal in the weighted tag co-occurrence
graph. In some embodiments, the weighted graph generator
207 iteratively performs denoising operation on the weighted
tag co-occurrence graph. The weighted graph generator 207
starts with the first pair of tags in the weighted tag co-occur-
rence graph. In each iteration of the denoising operation, the
weighted graph generator 207 determines whether the co-
occurrence consistency measured for each pair of tags in the
weighted tag co-occurrence graph is greater than the co-
occurrence consistency threshold “6,,,,,”. If the co-occur-
rence consistency measured for a pair of tags is greater than
“Opns,” the weighted graph generator 207 computes new
marginal counts “y(a)” and total counts “1,”, determines a
new measure of co-occurrence consistency for the pairs of
tags based on the new marginal and total counts and updates
the weighted tag co-occurrence graph with the new measure
of co-occurrence consistency for the pairs of tags. If the
co-occurrence consistency measured for the pair of tags is
lower than “8,,,,”, then the weighted graph generator 207
removes an edge from the pair of tags from the weighted tag
co-occurrence graph as noise. The weighted graph generator
207 ends the iteration for the denoising operation only when
all the pairs of tags (i.e., edges) in the weighted tag co-
occurrence graph are determined to be above the “6,.,,,,,”.

In some embodiments, the effect of denoising operation
results in increased co-occurrence consistency measured for a
tag with other related tags present in a tagset. For example, in
the tagset {bride, reception, marriage, cake, love, jason,
chris}, responsive to the denoising operation performed at
each iteration, the co-occurrence consistency of related tags,
suchas {bride, reception}, {marriage, love}, {reception, mar-
riage}, etc. increases while it decreases to zero for unrelated
tags, such as {marriage, chris} or {reception, jason} in the
weighted tag co-occurrence graph.
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In some embodiments, the weighted graph generator 207
measures a quality of the resulting weighted tag co-occur-
rence graph in each iteration of the denoising operation. For
example, the equation for measuring the quality of the
weighted tag co-occurrence graph (represented by “Q(¢,)”)
in each iteration can be:

2= D Piles Pt P,

(a,BeVxy

where ¢, is the weighted tag co-occurrence graph at the k?
iteration of the denoising operation, P,(c.,p) is the co-occur-
rence probability of the pair of tags (c, ) at the k™ iteration of
the denoising operation and ¢,(c,p) is the measure of co-
occurrence consistency for the pair of tags (a.p) in the
weighted tag co-occurrence graph at the k™ iteration of the
denoising operation.

In some embodiments, the weighted graph generator 207
sends data including the weighted tag co-occurrence graph to
the coherence engine 209. In some embodiments, the
weighted graph generator 207 stores the weighted tag co-
occurrence graph in the storage 243.

The coherence engine 209 can be software including rou-
tines for determining a coherence score oftagsets in the tagset
data. In some embodiments, the coherence engine 209 can be
a set of instructions executable by the processor 235 to pro-
vide the functionality described below for determining a
coherence score. In some embodiments, the coherence engine
209 can be stored in the memory 237 of the computing device
200 and can be accessible and executable by the processor
235. In some implementations, the coherence engine 209 may
be adapted for cooperation and communication with the pro-
cessor 235, the community detector 211 and other compo-
nents of the computing device 200 via signal line 229.

In some embodiments, the coherence engine 209 retrieves
the tagset data and the tag co-occurrence graph including the
co-occurrence consistency between all pairs of tags from the
storage 243 to determine the importance scores of all tags in
a tagset. In some embodiments, the coherence engine 209
receives the tagset data from the tagset data aggregator 203
and the tag co-occurrence graph from the weighted graph
generator 207 to determine the importance scores for all tags
in a tagset. The coherence engine 209 determines the impor-
tance score to identify which of the tags are more central to
the theme of community than others in the tagset. For
example, consider two tagsets: Tagset A: {rain, storm, cloudy,
umbrella, chocolate} and Tagset B: {candy, cocoa, chocolate,
coffee}. Both tagsets contain the tag “chocolate” but it really
belongs in Tagset B (i.e., it is highly connected to other tags in
Tagset B) and not in Tagset A. In other words, the relative
importance of this tag “chocolate” is different in the two
tagsets. Thus, the tag “chocolate” may be considered periph-
eral or noisy to the overall tagset A or may be considered quite
central to the tagset B.

In some embodiments, the coherence engine 209 initializes
the importance scores (e.g., p,* is the importance score of tag
X, initerationt) for all tags in a tagset (e.g., x={X, X5, . . . , X,,,}
is the set of m tags) to be equal (e.g., p,’=1¥i=1...m). The
coherence engine 209 then updates the importance scores
iteratively until convergence. For example, the equation for
convergence of importance score (represented by “p,*1) in
each iteration can be:
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where ¢(x,, x,) is the co-occurrence consistency measured
between tags x, and x; in this tagset. Orrorm? is the L, norm of
the importance vector in the t” iteration and can be:

m , 3
P = [Z (o) ] ,
i=1

The importance vector converges to the first unnormalized
Eigenvector of the (mxm) matrix: ®(x)=[¢(x,, x,)]. That is, if
AM(D(x)) is the first Eigenvalue and v, (®(x)) is the first
(normalized) Figenvector of this matrix then:

PE)=h (DE))xv, (P(x))

The importance scores quantify which tag in a tagset is
most central to the theme of community and is well connected
to other tags. For example, consider the example tagset {wim-
beldon: 1.02, lawn: 0.98, tennis: 0.95, net: 0.88, court: 0.83,
watching: 0.83, players: 0.81} including importance scores
for each tag. The tag “wimbeldon” is the most important tag
in this tagset and the contextual association of the tag “wim-
beldon” with tags, such as “lawn”, “tennis” is higher than
with other tags, such a, “watching”, “players”. The peripheral
tags, such as “watching”, “players” have the least importance
score. In some embodiments, the coherence engine 209 ranks
the tags within the tagset based on the importance score.
Although the example uses the highest importance score as
indicative of the most importance, persons of ordinary skill in
the art will recognize that difference scales of scores are
possible. For example, in one embodiment, the least impor-
tance score is indicative of the most importance.

In an embodiment, coherence engine 209 determines a
coherence score for the plurality of tagsets in the tagset data.
The coherence score associated with a tagset is a measure of
community-ness that is used by the community detector 211
described below in detecting communities. The coherence
engine 209 determines the coherence score for a tagset based
on the importance scores of the tags in the tagset. The coher-
ence score of a tagset is high when the consistency of a tag is
high with all other tags in the tagset and this is also true for all
other tags in the tagset. If a tag in the tagset is not highly
consistent with all the other tags in the tagset, then the coher-
ence of the tagset goes down. For example, the equation for
determining a coherence score (represented by “m(x|®)”) for
a tagset x={X;, X,, . . ., X,,,} can be:

n(x|P)=min,_

Pl

where p; is the importance score of tag x,. The coherence
engine 209 measures the coherence score of a tagset to be the
minimum importance score of all tags in the tagset. The least
important tag in the tagset bounds the coherence of the tagset.
For example, consider the example tagset {wimbeldon: 1.02,
lawn: 0.98, tennis: 0.95, net: 0.88, court: 0.83, watching: 0.83,
players: 0.81} including importance scores for each tag. The
coherence score determined for this example tagset is 0.81
which is the importance score of the tag “players”.

In some embodiments, the coherence engine 209 defines a
notion of community based on coherence scores determined
for the plurality of tagsets. Referring now to FIG. 3, a graphic
representation of a powerset 300 of an example tagset x={a, b,
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¢, d} is illustrated. Each node of the graphic representation is
a subset of the tag vocabulary “V” and is a potential candidate
for representing a community. In some embodiments, the
coherence engine 209 determines a neighborhood of a tagset
for defining a notion of community. For example, the neigh-
borhood of a tagset x (represented by “ N (x)”) can be:

N@=-N muN @,

where N ,(x) denotes the up-neighbors of tagset x in the
lattice space of the powerset 300 obtained by adding a tag
currently not in tagset x and ' _(x) denotes the down-neigh-
bors in the in the lattice space obtained by removing a tag
currently in tagset X. For example, the equation for NV ,(x)
and N _(x) can be:

N L@)={y=vDx, Vvelix},

N _@)={y=x\v,Vvex},

where “V” represents the vocabulary of all tags and “v”
represents the tag that is added to or removed from the tagset
x. Referring to the graphic representation of the powerset 300,
for example, the down-neighbor (i.e., N _({a, ¢, d})) of tag-
set {a, ¢, d} is the group of tagsets {{a. c}, {a,d}, {c,d}}. The
coherence engine 209 identifies these tagsets {{a. c}, {a, d},
{c, d}} by removing exactly one tag from tagset {a, ¢, d}. The
up-neighbor (i.e., N ,({a, c, d})) of tagset {a, ¢, d} is the
tagset {a, b, ¢, d}. The coherence engine 209 identifies the
tagset {a, b, ¢, d} by adding exactly one tag to tagset {a, c, d}.

In some embodiments, the coherence engine 209 compares
the coherence score of a tagset with the coherence scores
determined for its neighbors and identifies the tagset as a
community if the tagset is a “local maxima of coherence”. For
example, the coherence engine 209 determines a tagset x* as
a “local maxima of coherence” if:

ax)za(y), Ve N (v),

where N (x*) represents the neighborhood of tagset x*.

For example, in the graphic representation of the powerset
300, the coherence of tagset {a, ¢, d} is greater than the
coherence of all its neighbors. The coherence engine 209
compares the coherence scores of each tagset with all its
neighbors and identifies the tagset {a, ¢, d} as a local maxima
of coherence and, therefore, as a community.

In some embodiments, the coherence engine 209 sends
data including the importance scores of tags in the tagset data
and coherence scores of all tagsets from the tagset data to the
community detector 211. In some embodiments, the coher-
ence engine 209 stores the data including the importance
scores and coherence scores in the storage 243.

The community detector 211 can be software including
routines for detecting communities in the weighted tag co-
occurrence graph. In some embodiments, the community
detector 211 can be a set of instructions executable by the
processor 235 to provide the functionality described below
for detecting communities. In some embodiments, the com-
munity detector 211 can be stored in the memory 237 of the
computing device 200 and can be accessible and executable
by the processor 235. In some implementations, the commu-
nity detector 211 may be adapted for cooperation and com-
munication with the processor 235, the tag recommendation
engine 213 and other components of the computing device
200 via signal line 231.

In some embodiments, the community detector 211
receives data including importance scores, coherence scores,
etc. from the coherence engine 209 and the data including the
weighted tag co-occurrence graph from the weighted graph
generator 207. In some embodiments, the community detec-
tor 211 retrieves the data including importance scores, coher-
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ence scores, weighted tag co-occurrence graph, etc. from the
storage 243. In some embodiments, the community detector
211 applies a greedy algorithm to detect all communities
(local maxima of coherence) in the weighted tag co-occur-
rence graph.

In some embodiments, the community detector 211 deter-
mines each pair of tags from the vocabulary of all tags as a
starting seed (represented as X, (ct,p), X, (a,B), . . . , X, () to
detect as many communities in the weighted tag co-occur-
rence graph. The community detector 211 determines
whether each pair of tags used as a starting seed is above the
co-occurrence consistency threshold “8..,,,,” and identifies
the starting seed as a current tagset (represented by “x”). In
some embodiments, the greedy algorithm includes a grow
phase and a grow-shrink phase. In the grow phase, the com-
munity detector 211 iteratively adds the best tag to the current
tagset x that results in a maximally coherent community
(represented by “x*”). The community detector 211 instructs
the coherence engine 209 to determine the coherence score
whenever a next best tag is added to the current tagset x. The
community detector 211 ends the grow phase when the coher-
ence score of the current tagset is determined to be less with
the next best tag added in the last iteration. The community
detector 211 generates the largest possible candidate seed
(i.e., current tagset x) from the original starting seed (Xo(ct,p3))
using the grow phase.

In some embodiments, the community detector 211 begins
the grow-shrink phase responsive to generating the largest
possible candidate seed. In a first step of the grow-shrink
phase, the community detector 211 adds a first tag to the
current tagset X that results in a maximally coherent commu-
nity x* (referred as grow neighbor) and removes a second tag
from the current tagset that results in a maximally coherent
community X~ (referred as shrink neighbor). For example, the
equation for maximally coherent communities x* and X~ can
be:

x* = Grow(x | )

= arg maxXENJr(X) {n(x)},
x~ = Shrink(x | ®)

Sarg max. ar =)}

where N ,(x) denotes the up-neighbors of tagset x and
N _(x) denotes the down-neighbors of tagset x.

In some embodiments, the community detector 211 gener-
ates a candidate set (referred by “Cg(x)”) for the current
tagset. The candidate set reduces the computational complex-
ity in the grow step of the grow-shrink phase which results in
the maximally coherent community x*(grow neighbor). The
computational complexity in the grow step includes exhaus-
tively computing the coherence m(X), Vxe N, (X) since there
are | V', (x)I=IVI-IX] possible choices. The generated candi-
date set includes the set of tags (referred by “v”’) such that the
set of tags are connected with all the tags in tagset x with a
co-occurrence consistency measured higher than 6. For
example, the equation for generating a candidate set Co(X)
can be:

Cox)={<vk(VIx,®)>}, where, Yve N (x):
k(vlx,@)=min, . {o(v,%)}20, s,

In the grow step of the grow-shrink phase, the community
detector 211 identifies the top candidate v with the highest
value k(vIx,D) from the candidate set Cy(x) instead of per-
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forming an exhaustive search. For example, the firsttag added
to the current tagset above which results in the grow neighbor
x* can be a top candidate from the candidate set Cy(x). The
value k(vIx,®) is high if a tag v’s co-occurrence consistency
with all elements of tagset x is high. In some embodiments,
the community detector 211 updates the candidate set Cqy(X)
when the tagset grows as a result of adding one more element
v*. The candidate set is updated as shown:

K(vIx,®@)<—min{k(ux),p(u,v*) },VueCox){v*}

In the shrink step of the grow-shrink phase, the community
detector 211 determines the tag with a least important score of
all the tags in the current tagset x and removes the least
important tag. For example, the second tag removed from the
current tagset x above which results in the shrink neighbor x~
is the least important tag.

In some embodiments, the community detector 211
instructs the coherence engine 209 to determine the coher-
ence scores of the grow neighbor x* and the shrink neighbor
x~. The community detector 211 compares the coherence of
the grow neighbor x* with that of the shrink neighbor x~ as a
second step in the grow-shrink phase. If the coherence score
of the grow neighbor x* is greater than that of the shrink
neighbor x~, the community detector 211 determines that the
grow step of the grow-shrink phase is ideal to continue, iden-
tifies the grow neighbor x* as the next tagset x,,,,.,, adds a next
tag (top candidate v) from the candidate set Cq(%) to the next
tagset x,,,., and instructs the coherence engine 209 to deter-
mine the coherence score of this next tagset X,,,,. If the
coherence score of the shrink neighbor x~ is greater than that
of the grow neighbor x*, the community detector 211 deter-
mines that the shrink step of the grow-shrink phase is ideal to
continue, identifies the shrink neighbor x™ as the next tagset
X, FEMOVes a next tag that is least important from the next
tagset x,,,., and instructs the coherence engine 209 to deter-
mine the coherence score of this next tagset x,,,,.

In some embodiments, the community detector 211 com-
pares the coherence of the next tagset x,,.., with the coherence
of the current tagset X as a last step in the grow shrink phase.
Ifthe coherence score of the current tagset x is greater than the
coherence score of the next tagset X,,,.,, then the community
detector 211 determines that the current tagset x to be a local
maxima x* with a coherence 7(x*) satisfying the equation:

q(x* )zmax{m(x =Grow(x*)),7(x =Shrink(x*))}

The grow-shrink phase converges when neither the grow
neighbor x* nor the shrink neighbor x™ result in a tagset whose
coherence is higher than that of the current tagset x. The
community detector 211 determines the local maxima x* as a
community.

If'the coherence score of the next tagset x,,,.., is greater than
the coherence of the current tagset x, then the community
detector 211 determines that a local maxima has not been
reached yet, identifies the next tagsetx,,, , as the current tagset
x and repeats the community detection process from the first
step of the grow-shrink phase. The community detector 211
alternates between the grow and shrink phase depending on
which phase leads to the highest increase in the coherence
value.

In some embodiments, the community detector 211 detects
a plurality of communities that are duplicates of each other
generated using multiple starting seeds. For example, the tags
are a, b, ¢, and d. If tags {a, b} are seeds, the community
detector 211 generates {a, b, ¢} as a community. Iftags {a, ¢}
are seeds, the community detector 211 generates {a, b, c} as
a community. As a result, two different seeds result in gener-
ating the same community, so the community detector 211
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eliminates the duplicate communities (de-dupes) obtained
from all the seeds and the final output contains only one copy
of the community {a, b, c}.

In some embodiments, the community detector 211 sends
the data including communities detected to the tag recom-
mendation engine 213. In some embodiments, the commu-
nity detector 211 stores the data including the communities
detected in the storage 243.

The tag recommendation engine 213 can be software
including routines for recommending tags in real time for new
content using the communities. In some embodiments, the tag
recommendation engine 213 can be a set of instructions
executable by the processor 235 to provide the functionality
described below for recommending tags in real time. In some
embodiments, the tag recommendation engine 213 can be
stored in the memory 237 of the computing device 200 and
can be accessible and executable by the processor 235. In
some implementations, the tag recommendation engine 213
may be adapted for cooperation and communication with the
processor 235, the tagset data aggregator 203, the community
detector 211 and other components of the computing device
200 via signal line 233. In some embodiments, the tag rec-
ommendation engine 213 is a standalone application that
communicates with the community detection module 103.

In some embodiments, the tag recommendation engine 213
receives the data including communities from the community
detector 211 and the data including importance scores from
the coherence engine 209. In some embodiments, the tag
recommendation engine 213 retrieves the data including
communities and importance scores of tags within the com-
munities from the storage 243.

In some embodiments, the tag recommendation engine 213
receives a set of first input tags describing new content from
the tagset data aggregator 203. For example, a user inputs a
tagset {“snowboard”, “frontside”, “railslide”} describing a
snowboarding video on a video sharing online service. In
some embodiments, the tag recommendation engine 213
determines a community score for each community including
at least one input tag from the input tagset. The tag recom-
mendation engine 213 determines the community score by
adding the importance score for the at least one input tag
found within each community. For example, a community
“y” includes tags (e.g., {“snowboard”, “frontside”,
“railslide”, “superpipe”, “ramp”, “720”}) along with impor-
tance scores (e.g., {1.5,2.0, 1.2, 3.0, 2.0, 1.3}) for each tag.
The tag recommendation engine 213 determines the commu-
nity score for the community “y” to be “4.7” by computing
the sum of the importance scores for the input tags {“snow-
board”, “frontside”, “railslide”} found within the community.

In some embodiments, the tag recommendation engine 213
determines a recommendation score for each of the remaining
tags found within each community that were absent from the
input tagset. The tag recommendation engine 213 determines
the recommendation score by multiplying the importance
score of each of the remaining tags with the community score
identified for each community including each of the remain-
ing tags. For example, in the community “y”, the tag recom-
mendation engine 213 determines the recommendation score
for each of the remaining tags {*“superpipe”, “ramp”, “720”}
to be {14.1,9.4,6.11} by multiplying their importance scores
{3.0, 2.0, 1.3} with the community score 4.7. In some
embodiments, the tag recommendation engine 213 adds the
recommendation scores determined separately for each ofthe
remaining tags that were found to be common within one or
more communities. For example, a community “z” includes
tags {“superpipe”, “ramp”, “shredding”, “rotations”}, the tag
recommendation engine 213 identifies tags {“superpipe”,
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“ramp”} in community “z” to be common with community
“y” and adds the two recommendation scores computed sepa-
rately for the tags {“superpipe”, “ramp”} in the two commu-
nities “y” and “z”.

In some embodiments, the tag recommendation engine 213
sorts the recommendation scores determined for each of the
remaining tags in a descending order. In some embodiments,
the tag recommendation engine 213 recommends one or more
tags with the highest recommendation scores as additional
tags for the new content. In some embodiments, the tag rec-
ommendation engine 213 sends the recommended tags to the
user interface module 215 and instructs the user interface
module 215 to display the recommended tags in real time
adjacent to the first input tags entered by the user. For
example, the tag recommendation engine 213 determines the
tags {“superpipe”, “720”} as having high recommendation
scores. The tag recommendation engine 213 then recom-
mends the tags as additional entries to the input tagset
{“snowboard”, “frontside”, “railslide”} for the snowboard-
ing video in real time.

The user interface module 215 can be software including
routines for generating graphical data for providing user
interfaces to users. In some embodiments, the user interface
module 215 can be a set of instructions executable by the
processor 235 to provide the functionality described below
for generating graphical data for providing user interfaces
that includes information from the web server 111. In some
embodiments, the user interface module 215 can be stored in
the memory 237 of the computing device 200 and is acces-
sible and executable by the processor 235. In some imple-
mentations, the user interface module 215 can be adapted for
cooperation and communication with the processor 235 and
other components of the community detection module 103
via signal line 234.

In some embodiments, the user interface module 215
receives instructions from the tag recommendation engine
213 to generate graphical data that depicts tag recommenda-
tions in real time. In some embodiments, the user interface
module 215 receives instructions from the tagset data aggre-
gator 203 to generate a user interface for adding or deleting a
tag. In some other embodiments, the user interface module
215 generates graphical data for requested content based at
least in part on instructions from the online service engine
109. For example, the user interface module 215 generates
graphical data for displaying the community of images, pub-
lication text, videos, etc. The user interface module 215 sends
the graphical data to an application (e.g., a browser 177) in the
user device 115 via the communication unit 245 causing the
application to display the data in a user interface.

Methods

Referring now to FIG. 4, a flowchart 400 of an example
method for recommending tags using the communities is
described. The community detection module 103 includes a
tagset data aggregator 203, a counts statistics engine 205, a
weighted graph generator 207, a community detector 211 and
atag recommendation engine 213. The tagset data aggregator
203 identifies 402 a context defining a tagset. In some
embodiments, the context includes a resource tagset where
tags are associated with a single resource. For example, the
tags could be tags applied to images in a photo sharing online
service. The tagset data aggregator 203 determines 404 a
plurality of tagsets each including one or more tags and a
vocabulary of all unique tags. The counts statistics engine 205
generates 406 count statistics from the plurality of tagsets and
the vocabulary of all unique tags. The count statistics gener-
ated include co-occurrence counts, marginal counts, total
counts, co-occurrence probability and marginal probability.
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The weighted graph generator 207 generates 408 a weighted
tag co-occurrence graph for each pair of tags in the vocabu-
lary of all unique tags based on the count statistics and
denoises 410 the weighted tag co-occurrence graph. The
weighted graph generator 207 uses a co-occurrence consis-
tency threshold “0,.,,,,,” to determine whether a certain pair of
tags is noise and whether a certain other pair of tags is signal
in the weighted tag co-occurrence graph. The community
detector 211 identifies 412 a plurality of communities in the
weighted tag co-occurrence graph. The communities are each
a local maxima of coherence. The tag recommendation
engine 213 recommends 414 tags in real time based on the
plurality of communities identified. For example, a user
inputs a tagset {“snowboard”, “frontside”, “railslide”}
describing a snowboarding video, the tag recommendation
engine 213 recommends tags {“superpipe”, “720”} in real
time as additional tag entries.

FIGS. 5A and 5B are flowcharts 500 of an example method
for removing noise from a weighted tag co-occurrence graph.
The community detection module 103 includes a tagset data
aggregator 203, a counts statistics engine 205 and a weighted
graph generator 207. The tagset data aggregator 203 deter-
mines 502 a plurality of tagsets each including one or more
tags and a vocabulary of unique tags. The tags include key-
words or terms describing an entity. For example, a video
sharing online service receives tags, such as “football”,
“super bow!”, “touchdown”, “field goal”, etc. for a video clip.
The counts statistics engine 205 determines 504 a count of a
number of tagsets in which each pair of tags belonging to the
vocabulary co-occur. The counts statistics engine 205 forms
506 a co-occurrence counts graph from the count and deter-
mines 508 marginal counts using the co-occurrence counts
graph. The weighted graph generator 207 converts 510 the
co-occurrence counts graph into a weighted tag co-occur-
rence graph based on a measure of co-occurrence consistency
that measures how much more is the likelihood of each pair of
tags co-occurring in a tagset relative to random. The weighted
co-occurrence graph uses the measure of co-occurrence con-
sistency to discard co-occurrence counts between noisy pairs
and to keep the co-occurrence counts between signal pairs.
The weighted graph generator 207 identifies 512 a pair of tags
in weighted tag co-occurrence graph with a smallest co-oc-
currence consistency weight and determines 514 whether the
co-occurrence consistency measured for the pair of tags is
lower than a threshold. The threshold is a co-occurrence
consistency threshold “6_,,,. ”. If the co-occurrence consis-
tency measured for the pair of tags is not lower than the
threshold, then the flowchart 500 ends. If the co-occurrence
consistency measured for the pair of tags is lower than the
threshold, the weighted graph generator 207 removes 516 the
pair of tags as noise and proceeds to step 518 The weighted
graph generator 207 recomputes 518 the marginal counts by
adding up the co-occurrence counts of the pairs of tags that
exist in the tag co-occurrence graph and updates 520 the
measure of co-occurrence consistency for the pairs of tags
that exist in the weighted tag co-occurrence graph based on
the re-computed marginal counts. The weighted graph gen-
erator 207 determines 522 whether all the pairs of tags in the
weighted tag co-occurrence graph are above the threshold. If
not all the pairs of tags are above the threshold, the weighted
graph generator 207 identifies 524 a next pair of tags with the
smallest co-occurrence consistency weight and repeats the
process from step 514. The weighted graph generator 207
ends the process only when all the pairs of tags (i.e., edges) in
the weighted tag co-occurrence graph are determined to be
above the “0 .

consy
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FIGS. 6 A and 6B are flowcharts 600 of an example method
for removing noise from a weighted tag co-occurrence graph.
The community detection module 103 includes a tagset data
aggregator 203, a counts statistics engine 205 and a weighted
graph generator 207. The tagset data aggregator 203 deter-
mines 602 a plurality of tagsets each including one or more
tags and a vocabulary of unique tags. The tags include key-
words or terms describing an entity. For example, a video
sharing online service receives tags, such as “football”,
“super bowl”, “touchdown”, “field goal”, etc. for a video clip.
The counts statistics engine 205 determines 604 a count of a
number of tagsets in which each pair of tags belonging to the
vocabulary co-occur. The counts statistics engine 205 forms
606 a co-occurrence counts graph from the count and deter-
mines 608 marginal counts using the co-occurrence counts
graph. The weighted graph generator 207 converts 610 the
co-occurrence counts graph into a weighted tag co-occur-
rence graph based on a measure of co-occurrence consistency
that measures how much more is the likelihood of each pair of
tags co-occurring in a tagset relative to random. The weighted
co-occurrence graph uses the measure of co-occurrence con-
sistency to discard co-occurrence counts between noisy pairs
and to keep the co-occurrence counts between signal pairs.
The weighted graph generator 207 identifies 612 all pairs of
tags in the weighted tag co-occurrence graph whose co-oc-
currence consistency weight is below a threshold and
removes 614 the identified pairs of tags as noise. Then, the
weighted graph generator 207 proceeds to re-compute 616
the marginal counts by adding up the co-occurrence counts of
the pairs of tags that exist in the tag co-occurrence graph and
update 618 the measure of co-occurrence consistency for the
pairs of tags that exist in the weighted tag co-occurrence
graph based on the re-computed marginal counts. The
weighted graph generator 207 determines 620 whether all the
pairs of tags in the weighted tag co-occurrence graph are
above the threshold. If not all the pairs of tags are above the
threshold, the weighted graph generator 207 proceeds to
repeat the process from step 612. The weighted graph gen-
erator 207 ends the process when all the pairs of tags (i.e.,
edges) in the weighted tag co-occurrence graph are deter-
mined to be above the “6.,,,,”.

FIGS.7A and 7B are flowcharts 700 of an example method
for detecting a community in a weighted tag co-occurrence
graph. The community detection module 103 includes a
coherence engine 209 and a community detector 211. The
community detector 211 determines 702 a pair of tags as seed
for detecting a community and determines 704 whether a
measure of co-occurrence consistency between the pair of
tags is above a threshold. The threshold is a co-occurrence
consistency threshold “6,,,,”. The coherence engine 209
determines 706 an importance score for each pair of tags
using the co-occurrence consistency measure and determines
708 coherence of an initial tagset including the pair oftags as
being the importance score of a tag that is an aggregate of the
pair of tags. The coherence is a measure of community-ness.
The least important tag in the tagset bounds the coherence of
the tagset. For example, consider the example tagset {wim-
beldon: 1.02, lawn: 0.98, tennis: 0.95, net: 0.88, court: 0.83,
watching: 0.83, players: 0.81} including importance scores
for each tag. The coherence score determined for this example
tagset is 0.81 which is the importance score of the tag “play-
ers”. The community detector 211 adds 710 a tag that maxi-
mally increases the coherence to create a current tagset. The
community detector 211 determines 712 whether the coher-
ence of the current tagset is greater than before. If the coher-
ence of the current tagset is greater than before, the commu-
nity detector 211 repeats the step 710. The community
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detector 211 generates the largest possible candidate seed
from the original seed. Ifthe coherence of the current tagset is
not greater than before, the community detector 211 branches
to step 714 and step 716. The community detector 211 adds
714 a first tag that has a co-occurrence consistency measured
with all tags of the current tagset as being above the threshold
to create a grow tagset and removes 716 a second tag having
the least importance score from the current tagset to create a
shrink tagset. The grow tagset and the shrink tagset are two
maximally coherent communities. The community detector
211 determines 718 whether the coherence of the grow tagset
is greater than the coherence of the shrink tagset. If the coher-
ence of the grow tagset is greater than the coherence of the
shrink tagset, the community detector 211 identifies 720 the
grow tagset as a next tagset and adds a third tag that has a
co-occurrence consistency measured above the threshold and
proceeds to step 624. If the coherence of the grow tagset is not
greater than the coherence of the shrink tagset, the commu-
nity detector 211 identifies 722 the shrink tagset as a next
tagset and removes a fourth tag having the least importance
score and proceeds to step 624. The community detector 211
determines 724 whether the coherence of the next tagset is
greater than the coherence of the current tagset. If the coher-
ence of the next tagset is greater than the coherence of the
current tagset, the community detector 211 identifies 726 the
next tagset as the current tagset and branches to step 714 and
step 716 to repeat. If the coherence of the next tagset is not
greater than the coherence of the current tagset, the commu-
nity detector 211 determines 728 as the current tagset as the
community.

FIGS. 8A and 8B are flowcharts 800 of an example method
for recommending tags using the communities. The commu-
nity detection module 103 includes a weighted graph genera-
tor 207, a community detector 211 and a tag recommendation
engine 213. The weighted graph generator 207 determines
802 tagset data to build a weighted tag co-occurrence graph.
The community detector 211 detects 804 communities in the
weighted tag co-occurrence graph. The tag recommendation
engine 213 receives 806 an input tagset including at least one
first tag for new content from a user. For example, a user
inputs a tagset {“snowboard”, “frontside”, “railslide”}
describing a snowboarding video. The tag recommendation
engine 213 determines 808 a community score for each com-
munity that includes at least one first tag from the input tagset,
the community score being a sum of importance scores of the
at least one first tag found within each community. The tag
recommendation engine 213 determines 810 a recommenda-
tion score for at least one second tag absent from the input
tagset found within each community, the recommendation
score being a product of the importance score of the at least
one second tag within each community and the community
score determined for each community. The tag recommenda-
tion engine 213 adds 812 the recommendation score for the at
least one second tag that is common in each one of the com-
munities and sorts 814 the recommendation score for the at
least one second tag absent from the input tagset in a descend-
ing order. The tag recommendation engine 213 recommends
816 in real time the at least one second tag with a highest
recommendation score as an additional tag entry to the input
tagset. For example, the tag recommendation engine 213
determines the tags {“superpipe”, “720”} as having high
recommendation scores. The tag recommendation engine
213 then recommends the tags as additional entries to the
input tagset {“snowboard”, “frontside”, “railslide”} for the
snowboarding video in real time.

In the above description, for purposes of explanation,
numerous specific details are set forth in order to provide a
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thorough understanding of the specification. It will be appar-
ent, however, to one skilled in the art that the specification can
be practiced without these specific details. In other embodi-
ments, structures and devices are shown in block diagram
form in order to avoid obscuring the description. For example,
the present implementation is described in some implemen-
tations above primarily with reference to user interfaces and
particular hardware. However, the present implementation
applies to any type of computing device that can receive data
and commands, and any peripheral devices providing ser-
vices.

Some portions of the detailed descriptions are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self
consistent sequence of steps leading to a desired item. The
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers or
the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the discussion, it is appreciated that throughout
the description, discussions utilizing terms for example “pro-
cessing” or “computing” or “calculating” or “determining” or
“displaying” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

The present implementation of the specification also
relates to an apparatus for performing the operations herein.
This apparatus may be specially constructed for the required
purposes, or it may include a general-purpose computer
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a computer readable storage medium, for example,
but is not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic disks, read-only
memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMSs, magnetic or optical cards, flash
memories including USB keys with non-volatile memory or
any type of media suitable for storing electronic instructions,
each coupled to a computer system bus.

The specification can take the form of an entirely hardware
implementation, an entirely software implementation or an
implementation including both hardware and software ele-
ments. In a preferred implementation, the specification is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Furthermore, the description can take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by or in connection with a computer or any instruction execu-
tion system. For the purposes of this description, a computer-
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usable or computer readable medium can be any apparatus
that can include, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

A data processing system suitable for one or more storing
and executing program code will include at least one proces-
sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide tem-
porary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

Finally, the algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appara-
tus to perform the required method steps. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the specification is not
described with reference to any particular programming lan-
guage. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the
specification as described herein.

The foregoing description of the implementations of the
specification has been presented for the purposes of illustra-
tion and description. It is not intended to be exhaustive or to
limit the specification to the precise form disclosed. Many
modifications and variations are possible in light of the above
teaching. It is intended that the scope of the disclosure be
limited not by this detailed description, but rather by the
claims of this application. As will be understood by those
familiar with the art, the specification may be embodied in
other specific forms without departing from the spirit or
essential characteristics thereof. Likewise, the particular
naming and division of the modules, routines, features,
attributes, methodologies and other aspects are not manda-
tory or significant, and the mechanisms that implement the
specification or its features may have one or more different
names, divisions and formats. Furthermore, as will be appar-
ent to one of ordinary skill in the relevant art, the modules,
routines, features, attributes, methodologies and other
aspects of the disclosure can be implemented as software,
hardware, firmware or any combination of the three. Also,
wherever a component, an example of which is a module, of
the specification is implemented as software, the component
can be implemented as a standalone program, as part of a
larger program, as a plurality of separate programs, as a
statically or dynamically linked library, as a kernel loadable
module, as a device driver, and/or in every and any other way
known now or in the future to those of ordinary skill in the art
of computer programming. Additionally, the disclosure is in
no way limited to implementation in any specific program-
ming language, or for any specific operating system or envi-
ronment. Accordingly, the disclosure is intended to be illus-
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trative, but not limiting, of the scope of the specification,
which is set forth in the following claims.

What is claimed is:

1. A computer-implemented method comprising:

identifying, using one or more computing devices, a con-
text;

determining, using the one or more computing devices, a
plurality of tagsets each including one or more tags

describing an entity and a vocabulary of unique tags 10

defined by the identified context;

generating, using the one or more computing devices,
counts statistics using the plurality of tagsets and the
vocabulary of unique tags;

determining a measure of co-occurrence consistent for a

pair of tags in the vocabulary of unique tags based on the
counts statistics, the measure of co-occurrence consis-
tent indicating a likelihood of the pair of tags co-occur-
ring in a tagset from the plurality of tagsets relative to
random;

generating, using the one or more computing devices, a

weighted tag co-occurrence graph including the pair of
tags in the vocabulary of unique tags based on the mea-
sure of co-occurrence consistent;

denoising, using the one or more computing devices, the

weighted tag co-occurrence graph; and

responsive to removing the noise, identifying, using the

one or more computing devices, at least one community
in the weighted tag co-occurrence graph.

2. The method of claim 1, further comprising recommend-
ing tags in real time based on the at least one community in the
weighted tag co-occurrence graph.

3. The method of claim 1, wherein the counts statistics
comprise co-occurrence counts for one or more pairs of tags,
marginal counts for one or more unique tags, total counts,
co-occurrence probabilities and marginal probabilities.

4. The method of claim 1, wherein removing the noise from
the weighted tag co-occurrence graph further comprises:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is below a threshold; and

responsive to determining that the measure of co-occur-

rence consistency is below the threshold, removing an
edge connecting the pair of tags from the weighted tag
co-occurrence graph as noise.

5. The method of claim 1, wherein removing the noise from
the weighted tag co-occurrence graph further comprises:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is above a threshold; and

responsive to determining that the measure of co-occur-

rence consistency is above the threshold, re-computing
the counts statistics and updating the measure of co-
occurrence consistency for the pair of tags in the
weighted tag co-occurrence graph based on the recom-
puted counts statistics.

6. The method of claim 1, wherein identifying the at least
one community from the weighted tag co-occurrence graph
further comprises:

determining an importance score of the one or more tags in

one or more tagsets from the plurality of tagsets using
the weighted tag co-occurrence graph, the importance
score indicating how highly a tag is connected to other
tags in the one or more tagsets;

determining coherence of the one or more tagsets based on

the importance score of the one or more tags, the coher-
ence being a measure of community-ness and expressed
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as an aggregate of the importance score of the one or
more tags in the one or more tagsets; and

identifying the at least one community from the weighted

tag co-occurrence graph by comparing the coherence
between the one or more tagsets from the plurality of
tagsets.

7. The method of claim 6, wherein identifying the at least
one community by comparing the coherence between the one
or more tagsets from the plurality of tagsets further com-
prises:

determining a pair of tags with a measure of co-occurrence

consistency above a threshold as seed;

identifying the seed as a current tagset;

determining the coherence of the current tagset;

adding a first tag that has a co-occurrence consistency

measured with unique tags of the current tagset above
the threshold to create a grow tagset;
removing a second tag having a least importance score
from the current tagset to create a shrink tagset;

comparing a coherence measured for the grow tagset with
a coherence measured for the shrink tagset;

responsive to the coherence measured for the grow tagset
being greater than the coherence measured for the shrink
tagset, identifying the grow tagset as a next tagset and
adding a third tag that has a co-occurrence consistency
measured with remaining tags of the next tagset above
the threshold;

responsive to the coherence measured for the grow tagset

being lesser than the coherence measured for the shrink
tagset, identifying the shrink tagset as the next tagset and
removing a fourth tag having a least importance score
from the next tagset;

comparing the coherence measured for the next tagset with

the coherence of the current tagset; and

responsive to the coherence measured for the current tagset

being greater than the coherence measured for the next
tagset, determining the current tagset as being a commu-
nity.

8. The method of claim 7, wherein responsive to the coher-
ence measured for the current tagset being lesser than the
coherence measured for the next tagset:

adding a first next tag that has a co-occurrence consistency

measured with unique tags of the current tagset above

the threshold to create a next grow tagset; and
removing a second next tag having a least importance score

from the current tagset to create a next shrink tagset.

9. The method of claim 7, wherein identifying the seed as
the current tagset further comprises:

creating a largest candidate seed by adding a next tag to the

seed to increase coherence until failure; and
identifying the largest candidate seed as the current tagset.

10. A system comprising:

one or more processors, the one or more processors being

configured to:

identify a context;

determine a plurality of tagsets each including one or
more tags describing an entity and a vocabulary of
unique tags defined by the identified context;

generate counts statistics using the plurality of tagsets
and the vocabulary of unique tags;

determine a measure of co-occurrence consistency for a
pair of tags in the vocabulary of unique tags based on
the counts statistics, the measure of co-occurrence
consistency indicating a likelihood of the pair of tags
co-occurring in a tagset from the plurality of tagsets
relative to random:;
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generate a weighted tag co-occurrence graph including
the pair of tags in the vocabulary of unique tags based
on the measure of co-occurrence consistency;

denoise the weighted tag co-occurrence graph; and

responsive to removal of the noise, identify at least one
community in the weighted tag co-occurrence graph.

11. The system of claim 10, wherein the one or more
processors remove the noise from the weighted tag co-occur-
rence graph by:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is below a threshold; and

responsive to determining that the measure of co-concur-

rency consistency is below the threshold, removing an
edge connecting the pair of tags from the weighted tag
co-occurrence graph as noise.

12. The system of claim 10, wherein the one or more
processors remove the noise from the weighted tag co-occur-
rence graph by:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is above a threshold; and

responsive to determining that the measure of co-occur-

rence consistency is above the threshold, re-computing
the counts statistics and updating the measure of co-
occurrence consistency for the pair of tags in the
weighted tag co-occurrence graph based on the recom-
puted counts statistics.

13. The system of claim 10, wherein the one or more
processors identify the at least one community from the
weighted tag co-occurrence graph by:

determining an importance score of the one or more tags in

one or more tagsets from the plurality of tagsets using
the weighted tag co-occurrence graph, the importance
score indicating how highly a tag is connected to other
tags in the one or more tagsets;

determining coherence of the one or more tagsets based on

the importance score of the one or more tags, the coher-
ence being a measure of community-ness and expressed
as an aggregate of the importance score of the one or
more tags in the one or more tagsets; and

identifying the at least one community from the weighted

tag co-occurrence graph by comparing the coherence
between the one or more tagsets from the plurality of
tagsets.

14. A computer program product comprising a non-transi-
tory computer usable medium including a computer readable
program, wherein the computer readable program when
executed on a computer causes the computer to perform steps
comprising:

identifying, using one or more computing devices, a con-

text;

determining, using the one or more computing devices, a

plurality of tagsets each including one or more tags
describing an entity and a vocabulary of unique tags
defined by the identified context;
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generating, using the one or more computing devices,
counts statistics using the plurality of tagsets and the
vocabulary of unique tags;

determining a measure of co-occurrence consistency for a

pair of tags in the vocabulary of unique tags based on the
counts statistics, the measure of co-occurrence consis-
tency indicating a likelihood of the pair of tags co-
occurring in a tagset from the plurality of tagsets relative
to random;

generating, using the one or more computing devices, a

weighted tag co-occurrence graph including the pair of
tags in the vocabulary of unique tags based on the mea-
sure of co-occurrence consistency;

denoising, using the one or more computing devices, the

weighted tag co-occurrence graph; and

responsive to removing the noise, identifying, using the

one or more computing devices, at least one community
in the weighted tag co-occurrence graph.

15. The computer program product of claim 14, wherein
removing the noise from the weighted tag co-occurrence
graph further comprises:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is below a threshold; and

responsive to determining that the measure of co-occur-

rence consistency is below the threshold, removing an
edge connecting the pair of tags from the weighted tag
co-occurrence graph as noise.

16. The computer program product of claim 14, wherein
removing the noise from the weighted tag co-occurrence
graph further comprises:

determining whether the measure of co-occurrence consis-

tency for the pair of tags in the weighted tag co-occur-
rence graph is above a threshold; and

responsive to determining that the measure of co-occur-

rence consistency is above the threshold, re-computing
the counts statistics and updating the measure of co-
occurrence consistency for the pair of tags in the
weighted tag co-occurrence graph based on the recom-
puted counts statistics.

17. The computer program product of claim 14, wherein
identifying the at least one community from the weighted tag
co-occurrence graph further comprises:

determining an importance score of the one or more tags in

one or more tagsets from the plurality of tagsets using
the weighted tag co-occurrence graph, the importance
score indicating how highly a tag is connected to other
tags in the one or more tagsets;

determining coherence of the one or more tagsets based on

the importance score of the one or more tags, the coher-
ence being a measure of community-ness and expressed
as an aggregate of the importance score of the one or
more tags in the one or more tagsets; and

identifying the at least one community from the weighted

tag co-occurrence graph by comparing the coherence
between the one or more tagsets from the plurality of
tagsets.



